课程简介:目标检测是计算机视觉三大基本任务(图像分类、目标检测以及图像分割)之一,而且目标检测在这三个任务中扮演着承上启下的角色。目标检测的实质就是目标分类和定位,它是在分类基础上发展起来的一项深度学习技术。同时,图像分割则是在目标检测基础上再进行像素级别的分类。所以,学好了目标检测技术的原理和应用,就可以说对图像分类已经有了很好的掌握,而且为接下来的图像分割的学习和应用奠定了一个非常的扎实的基础。此外,目标检测在计算机视觉技术中应用非常广泛,从视频监控到无人零售再到工业检测、医疗诊断、文本识别等等领域,无不闪耀着它的身影。毫无疑问,它是计算机视觉技术落地场景中最常用的一个方向。随着计算机视觉技术的蓬勃发展,目标检测算法模型已经迭代了好几代,从two stages到one stage等,不一而举。它们各有优缺点,没有哪个模型在所有场景下都是最优的。但是综合起来看,基于准确度、实时性以及易用性、可移植性等方面来考虑,YOLOV3无疑是到目前为之较佳的目标检测算法模型之一,在当前工业界中应用非常广泛。 本课程以实战为主,主要是基于一个来自实际开发项目的无人零售商品数据集(训练集和测试集总共有8000多张图片)来讲解如何一步一步地训练出YOLOV3算法模型并进行性能评估。当然,在讲解过程中,不仅仅教大家如何使用,而且还会把背后的原理以及容易犯的错误都讲清楚。让大家学完本课程后能知其然而且知其所以然,从而真正地掌握它,并应用到实际场景中去。
第一课:课程内容、目标、特色以及平台环境等介绍。 讲师介绍: 刘铁山 2003年工学硕士毕业,研究方向为模式识别。曾任职于Broadcom、AMD等知名外企,现为上海某科创公司人工智能部门负责人,主要研究内容有基于opencv的传统图像增强、图像分割和识别等;基于深度学习的目标检测以及AI算法模型在嵌入式设备的移植等。 授课时间: 课程将于2024年11月14日开课,课程持续时间大约为12周。 课程环境: Ubuntu16.0.4或18.0.4 + python。 如有GPU更佳,以提高训练速度 课程基础: 熟悉ubuntu环境,会python编程,有点c语言基础更佳。 授课对象: 对目标检测算法原理及应用感兴趣的所有人员,包括算法工程师、在校大学生等 收获预期: 学完本课程可以使得大家能熟练使用darknet框架来对自己的数据集训练出YOLOV3模型,同时可以使用相关工具对该模型进行各方面性能评估,并基于训练出来的算法模型对未知图片进行目标检测。 本人近几年来一直专注于目标检测算法的研究以及应用。对各种经典目标检测算法模型都有比较深入了解,同时对算法模型在各个平台的部署甚至在嵌入式端的移植也积累了比较多的经验,在本课程学习过程中我们都可以来进行讨论和交流。 当然,如果大家对计算机视觉,甚至整个人工智能方向的职业规划、就业有任何问题或迷惑,我也乐于和你们分享我的看法和观点。 新颖的课程收费形式:“逆向收费”约等于免费学习,仅收取100元固定收费+300元暂存学费,学习圆满则全额奖励返还给学员! 本门课程本来打算完全免费,某位大神曾经说过“成功就是正确的方向再加上适度的压力”。考虑到讲师本身要付出巨大的劳动,为了防止一些朋友在学习途中半途而废,浪费了讲师的付出,为此我们计划模仿某些健身课程,使用“逆向收费”的方法。 在报名时每位报名者收取400元,其中100元为固定 收费,另外300是暂存学费,即如果学员能完成全部课程要求,包括完成全部的书面和互动作业,则300元全款退回。如果学员未能坚持到完全所有的学习计划任务,则会被扣款。期望这种方式可以转化为大家强烈的学习愿望和驱动力! 课程授课方式: 1、 学习方式:老师发布教学资料、教材,幻灯片和视频,学员通过网络下载学习。同时通过论坛互动中老师对学员进行指导及学员之间相互交流。 2、 学习作业:老师每周布置书面及互动作业,学员需按时按质完成作业。 3、 老师辅导:根据作业批改中发现的问题,针对性给予辅导,帮助大家掌握知识。 4、 结业测验:通过测验,完成学业。 您是否对此课程还有疑问,那么请 点击进入 FAQ,您的问题将基本得到解答 咨询QQ: 2222010006 (上班时间在线) 技术热点、 行业资讯,培训课程信息,尽在炼数成金官方微信,低成本传递高端知识!技术成就梦想!欢迎关注!
打开微信,使用扫一扫功能,即刻关注炼数成金官方微信账户,不容错过的精彩,期待您的体验!!! |